Infrared spectroscopy of molecular submonolayers on surfaces by infrared scanning tunneling microscopy: tetramantane on Au111.

نویسندگان

  • Ivan V Pechenezhskiy
  • Xiaoping Hong
  • Giang D Nguyen
  • Jeremy E P Dahl
  • Robert M K Carlson
  • Feng Wang
  • Michael F Crommie
چکیده

We have developed a new scanning-tunneling-microscopy-based spectroscopy technique to characterize infrared (IR) absorption of submonolayers of molecules on conducting crystals. The technique employs a scanning tunneling microscope as a precise detector to measure the expansion of a molecule-decorated crystal that is irradiated by IR light from a tunable laser source. Using this technique, we obtain the IR absorption spectra of [121]tetramantane and [123]tetramantane on Au(111). Significant differences between the IR spectra for these two isomers show the power of this new technique to differentiate chemical structures even when single-molecule-resolved scanning tunneling microscopy (STM) images look quite similar. Furthermore, the new technique was found to yield significantly better spectral resolution than STM-based inelastic electron tunneling spectroscopy, and to allow determination of optical absorption cross sections. Compared to IR spectroscopy of bulk tetramantane powders, infrared scanning tunneling microscopy (IRSTM) spectra reveal narrower and blueshifted vibrational peaks for an ordered tetramantane adlayer. Differences between bulk and surface tetramantane vibrational spectra are explained via molecule-molecule interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrosorption and catalytic properties of bare and Pt modified single crystal and nanostructured Ru surfaces

The electrosorption and catalytic properties of bare and Pt modified Ru(0001) and Ru(10−10) single crystal surfaces and carbon supported Ru nanoparticles have been studied by electrochemical, surface X-ray scattering, scanning tunneling microscopy, Fourier transform infrared spectroscopy and high resolution transmission electron microscopy techniques. The electrochemical surface oxidation of Ru...

متن کامل

Asymmetry of electron transmission through monolayers of helical polyalanine adsorbed on gold surfaces.

Polyalanine derivatives containing cysteamine linker R-(Ala)14NH-(CH2)2-SH, where R is ferrocenecarbonyl or hydrogen, were synthesized and then used to form self-assembled monolayers on gold. The tilt angles and the packing density of the molecules within monolayer assemblies were determined by FTIR spectroscopy and scanning tunneling microscopy, respectively. Electrochemical properties of mono...

متن کامل

Electrochemically Modulated IRS Fourier Transform High-Resolution EELS Infrared Reflection-Absorption IRS Infrared Spectroscopy Low-Energy Electron Diffraction Mercury-Cadmium-Telluride Polarization Modulation IRRAS Reversible Hydrogen Electrode Saturated Calomel Electrode Standard Hydrogen Electrode Sum-Frequency Generation Scanning Tunneling Microscopy Ultra-High Vacuum

An insight into the in situ FTIR spectroscopy method as applied in Electrochemistry is given. The particular aspects inherent to the electrochemical method are described in a concise form. Selected examples cover the results of about the last 8 years, on a variety of systems including carbon monoxide, small organic molecules and double-layer components (hydrogen, anions and water).The experimen...

متن کامل

بررسی تاثیر شیوه خشک سازی بر خواص اپتیکی فیلم های نازک نانو ساختاری اکسید نیکل

The nanostructured nickel oxide thin films were prepared by dip coating sol – gel method. Three methods (drying with oven, IR and microwave) have used for drying the films. The effect of drying method on the optical, molecular, electrical, structural, and morphology properties of the films were studied by Uv-Visible spectrophotometry, Fourier Transform Infrared spectroscopy, Hall effect, X-ray ...

متن کامل

Spatially resolved electronic and vibronic properties of single diamondoid molecules.

Diamondoids are a unique form of carbon nanostructure best described as hydrogen-terminated diamond molecules. Their diamond-cage structures and tetrahedral sp3 hybrid bonding create new possibilities for tuning electronic bandgaps, optical properties, thermal transport and mechanical strength at the nanoscale. The recently discovered higher diamondoids have thus generated much excitement in re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 111 12  شماره 

صفحات  -

تاریخ انتشار 2013